Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Environ Sci Technol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739716

RESUMEN

Methane, a greenhouse gas, plays a pivotal role in the global carbon cycle, influencing the Earth's climate. Only a limited number of microorganisms control the flux of biologically produced methane in nature, including methane-oxidizing bacteria, anaerobic methanotrophic archaea, and methanogenic archaea. Although previous studies have revealed the spatial and temporal distribution characteristics of methane-metabolizing microorganisms in local regions by using the marker genes pmoA or mcrA, their biogeographical patterns and environmental drivers remain largely unknown at a global scale. Here, we used 3419 metagenomes generated from georeferenced soil samples to examine the global patterns of methane metabolism marker gene abundances in soil, which generally represent the global distribution of methane-metabolizing microorganisms. The resulting maps revealed notable latitudinal trends in the abundances of methane-metabolizing microorganisms across global soils, with higher abundances in the sub-Arctic, sub-Antarctic, and tropical rainforest regions than in temperate regions. The variations in global abundances of methane-metabolizing microorganisms were primarily governed by vegetation cover. Our high-resolution global maps of methane-metabolizing microorganisms will provide valuable information for the prediction of biogenic methane emissions under current and future climate scenarios.

2.
BMC Plant Biol ; 24(1): 325, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658813

RESUMEN

BACKGROUND: With the dramatic uplift of the Qinghai-Tibet Plateau (QTP) and the increase in altitude in the Pliocene, the environment became dry and cold, thermophilous plants that originally inhabited ancient subtropical forest essentially disappeared. However, Quercus sect. Heterobalanus (QSH) have gradually become dominant or constructive species distributed on harsh sites in the Hengduan Mountains range in southeastern QTP, Southwest China. Ecological stoichiometry reveals the survival strategies plants adopt to adapt to changing environment by quantifying the proportions and relationships of elements in plants. Simultaneously, as the most sensitive organs of plants to their environment, the structure of leaves reflects of the long-term adaptability of plants to their surrounding environments. Therefore, ecological adaptation mechanisms related to ecological stoichiometry and leaf anatomical structure of QSH were explored. In this study, stoichiometric characteristics were determined by measuring leaf carbon (C), nitrogen (N), and phosphorus (P) contents, and morphological adaptations were determined by examining leaf anatomical traits with microscopy. RESULTS: Different QSH life forms and species had different nutrient allocation strategies. Leaves of QSH plants had higher C and P and lower N contents and higher N and lower P utilization efficiencies. According to an N: P ratio threshold, the growth of QSH species was limited by N, except that of Q. aquifolioides and Q. longispica, which was limited by both N and P. Although stoichiometric homeostasis of C, N, and P and C: N, C: P, and N: P ratios differed slightly across life forms and species, the overall degree of homeostasis was strong, with strictly homeostatic, homeostatic, and weakly homeostatic regulation. In addition, QSH leaves had compound epidermis, thick cuticle, developed palisade tissue and spongy tissue. However, leaves were relatively thin overall, possibly due to leaf leathering and lignification, which is strategy to resist stress from UV radiation, drought, and frost. Furthermore, contents of C, N, and P and stoichiometric ratios were significantly correlated with leaf anatomical traits. CONCLUSIONS: QSH adapt to the plateau environment by adjusting the content and utilization efficiencies of C, N, and P elements. Strong stoichiometric homeostasis of QSH was likely a strategy to mitigate nutrient limitation. The unique leaf structure of the compound epidermis, thick cuticle, well-developed palisade tissue and spongy tissue is another adaptive mechanism for QSH to survive in the plateau environment. The anatomical adaptations and nutrient utilization strategies of QSH may have coevolved during long-term succession over millions of years.


Asunto(s)
Adaptación Fisiológica , Carbono , Nitrógeno , Fósforo , Hojas de la Planta , Quercus , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Quercus/anatomía & histología , Quercus/fisiología , Fósforo/metabolismo , Nitrógeno/metabolismo , Tibet , Carbono/metabolismo , China , Ecosistema
3.
Environ Sci Technol ; 58(11): 4989-5002, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442002

RESUMEN

Global warming and acidification, induced by a substantial increase in anthropogenic CO2 emissions, are expected to have profound impacts on biogeochemical cycles. However, underlying mechanisms of nitrous oxide (N2O) production in estuarine and coastal sediments remain rarely constrained under warming and acidification. Here, the responses of sediment N2O production pathways to warming and acidification were examined using a series of anoxic incubation experiments. Denitrification and N2O production were largely stimulated by the warming, while N2O production decreased under the acidification as well as the denitrification rate and electron transfer efficiency. Compared to warming alone, the combination of warming and acidification decreased N2O production by 26 ± 4%, which was mainly attributed to the decline of the N2O yield by fungal denitrification. Fungal denitrification was mainly responsible for N2O production under the warming condition, while bacterial denitrification predominated N2O production under the acidification condition. The reduced site preference of N2O under acidification reflects that the dominant pathways of N2O production were likely shifted from fungal to bacterial denitrification. In addition, acidification decreased the diversity and abundance of nirS-type denitrifiers, which were the keystone taxa mediating the low N2O production. Collectively, acidification can decrease sediment N2O yield through shifting the responsible production pathways, partly counteracting the warming-induced increase in N2O emissions, further reducing the positive climate warming feedback loop.


Asunto(s)
Bacterias , Desnitrificación , Bacterias/metabolismo , Calentamiento Global , Óxido Nitroso/análisis , Concentración de Iones de Hidrógeno , Suelo
4.
Quant Imaging Med Surg ; 14(3): 2391-2404, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38545047

RESUMEN

Background: Metastatic burden of sentinel lymph node (SLN) in breast cancer patient is the basis for the decision to choose SLN biopsy or axillary lymph node dissection (ALND). However, the diagnostic performance of the previous percutaneous contrast-enhanced ultrasound (P-CEUS) and intravenous contrast-enhanced ultrasound (IV-CEUS) pattern were not satisfied. This study aimed to establish new classification based on structural characteristics for P-CEUS and IV-CEUS of SLN in breast cancer and evaluate the diagnostic efficacy. Methods: This retrospective study included consecutive breast cancer patients who had not received neoadjuvant therapy in the First Affiliated Hospital of Sun Yat-sen University between June 2019 and December 2021. Conventional ultrasound, P-CEUS and IV-CEUS were performed. The new classification methods for P-CEUS and IV-CEUS of SLN were established based on structural characteristics of SLN. Pathology was considered as the gold standard, the diagnostic efficacy of P-CEUS, IV-CEUS and combined contrast-enhanced ultrasound in SLNs was analyzed. Results: The detection rate of SLN by P-CEUS in 368 patients was 95.42%. The P-CEUS pattern of SLNs was divided into six types. The IV-CEUS sequence was divided into three types. The IV-CEUS mode was divided into four types. Among the 438 SLNs detected by P-CEUS, 105 (23.97%) were malignant and 333 (76.03%) were benign. Among the previously classified P-CEUS, P-CEUS, IV-CEUS and combined contrast-enhanced ultrasound, the latter had the highest diagnostic efficacy (P<0.05), with sensitivity, specificity, positive predictive value, negative predictive value, accuracy and area under curve (AUC) of 81.90% (86/105), 97.30% (324/333), 90.53% (86/95), 94.46% (324/343), 93.61% (410/438) and 0.896 (0.864-0.923), respectively. Conclusions: The new classification of the P-CEUS and IV-CEUS features of SLNs was performed based on structural characteristics of lymph nodes. Compared with the previously classified P-CEUS, the new classification method has higher diagnostic performance. The combination of new classified P-CEUS and IV-CEUS is helpful to further improve the diagnostic performance of SLNs.

5.
Int J Biometeorol ; 68(4): 691-700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38182774

RESUMEN

Meteorological factors and air pollutants are associated with the spread of pulmonary tuberculosis (PTB), but few studies have examined the effects of their interactions on PTB. Therefore, this study investigated the impact of meteorological factors and air pollutants and their interactions on the risk of PTB in Urumqi, a city with a high prevalence of PTB and a high level of air pollution. The number of new PTB cases in eight districts of Urumqi from 2014 to 2019 was collected, along with data on meteorological factors and air pollutants for the same period. A generalized additive model was applied to explore the effects of meteorological factors and air pollutants and their interactions on the risk of PTB incidence. Segmented linear regression was used to estimate the nonlinear characteristics of the impact of meteorological factors on PTB. During 2014-2019, a total of 14,402 new cases of PTB were reported in eight districts, with March to May being the months of high PTB incidence. The exposure-response curves for temperature (Temp), relative humidity (RH), wind speed (WS), air pressure (AP), and diurnal temperature difference (DTR) were generally inverted "U" shaped, with the corresponding threshold values of - 5.411 °C, 52.118%, 3.513 m/s, 1021.625 hPa, and 8.161 °C, respectively. The effects of air pollutants on PTB were linear and lagged. All air pollutants were positively associated with PTB, except for O3, which was not associated with PTB, and the ER values for the effects on PTB were as follows: 0.931 (0.255, 1.612) for PM2.5, 1.028 (0.301, 1.760) for PM10, 5.061 (0.387, 9.952) for SO2, 2.830 (0.512, 5.200) for NO2, and 5.789 (1.508, 10.251) for CO. Meteorological factors and air pollutants have an interactive effect on PTB. The risk of PTB incidence was higher when in high Temp-high air pollutant, high RH-high air pollutant, high WS-high air pollutant, lowAP-high air pollutant, and high DTR-high air pollutant. In conclusion, both meteorological and pollutant factors had an influence on PTB, and the influence on PTB may have an interaction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Tuberculosis Pulmonar , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Conceptos Meteorológicos , China/epidemiología , Tuberculosis Pulmonar/epidemiología , Material Particulado/análisis
6.
Environ Sci Technol ; 58(2): 1152-1163, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38166438

RESUMEN

Coastal wetlands are hotspots for methane (CH4) production, reducing their potential for global warming mitigation. Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in bridging carbon and nitrogen cycles, contributing significantly to CH4 consumption. However, the role of n-DAMO in reducing CH4 emissions in coastal wetlands is poorly understood. Here, the ecological functions of the n-DAMO process in different saltmarsh vegetation habitats as well as bare mudflats were quantified, and the underlying microbial mechanisms were explored. Results showed that n-DAMO rates were significantly higher in vegetated habitats (Scirpus mariqueter and Spartina alterniflora) than those in bare mudflats (P < 0.05), leading to an enhanced contribution to CH4 consumption. Compared with other habitats, the contribution of n-DAMO to the total anaerobic CH4 oxidation was significantly lower in the Phragmites australis wetland (15.0%), where the anaerobic CH4 oxidation was primarily driven by ferric iron (Fe3+). Genetic and statistical analyses suggested that the different roles of n-DAMO in various saltmarsh wetlands may be related to divergent n-DAMO microbial communities as well as environmental parameters such as sediment pH and total organic carbon. This study provides an important scientific basis for a more accurate estimation of the role of coastal wetlands in mitigating climate change.


Asunto(s)
Nitratos , Humedales , Metano , Anaerobiosis , Poaceae , Oxidación-Reducción , Carbono , Nitritos
7.
Sci Rep ; 14(1): 2088, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267494

RESUMEN

To explore the influence of meteorological factors on the incidence of tuberculosis (TB) in Yingjisha County, Kashgar Region, Xinjiang, and to provide a scientific basis for the prevention and control of TB. The Spearman correlation analysis and distribution lag nonlinear model analysis were conducted on the number of daily reported cases of TB from 2016 to 2023 to study the association effect of various meteorological factors and the daily incidence number of TB in Yingjisha County. A total of 13,288 TB cases were reported from January 2016 to June 2023, and June to October is the peak period of annual TB incidence. Spearman correlation analysis revealed that average daily temperature (AT) and average daily wind speed (WS) were positively correlated with TB incidence (rAT = 0.110, rWS = 0.090); and average daily relative humidity (RH) and TB incidence was negatively correlated (rRH = - 0.093). When AT was - 15 °C, the RR reached a maximum of 2.20 (95% CI: 0.77-6.29) at a lag of 21 days. When RH was 92%, the RR reached a maximum of 1.05 (95% CI: 0.92-1.19) at a lag of 6 days. When WS was 5.2 m/s, the RR reached a maximum of 1.30 (95% CI: 0.78-2.16) at a lag of 16 days. There is a non-linearity and a certain lag between meteorological factors and the occurrence and prevalence of TB in the population, which is mainly manifested in the fact that the risk of incidence of TB decreases with the increase of the daily AT, has a hazardous effect within a certain range of humidity as the average daily RH rises, and gradually increases with the increase of the average daily WS. Local residents are advised to pay attention to climate change so as to take appropriate preventive measures, especially women and middle and old age group should pay close attention to climate change and add more clothes in time, minimise travelling in hazy weather and windy and sandy weather, maintain good nutrition, adequate sleep and moderate exercise in daily life to enhance their immunity, wash hands frequently and ventilate the air, and try to avoid staying in humid and confined spaces in order to reduce the risk of latent TB patients developing the disease.


Asunto(s)
Tuberculosis Latente , Tuberculosis , Humanos , Femenino , Incidencia , Conceptos Meteorológicos , Tuberculosis/epidemiología , Tiempo (Meteorología)
8.
Sci Total Environ ; 914: 169833, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38190922

RESUMEN

Estuaries, as important land-ocean transitional zones across the Earth's surface, are hotspots of microbially driven dark carbon fixation (DCF), yet understanding of DCF process remains limited across the estuarine-coastal continuum. This study explored DCF activities and associated chemoautotrophs along the estuarine and coastal environmental gradients, using radiocarbon labelling and molecular techniques. Significantly higher DCF rates were observed at middle- and high-salinity regions (0.65-2.31 and 0.66-2.82 mmol C m-2 d-1, respectively), compared to low-salinity zone (0.07-0.19 mmol C m-2 d-1). Metagenomic analysis revealed relatively stable DCF pathways along the estuarine-coastal continuum, primarily dominated by Calvin-Benson-Bassham (CBB) cycle and Wood-Ljungdahl (WL) pathway. Nevertheless, chemoautotrophic communities driving DCF exhibited significant spatial variations. It is worth noting that although CBB cycle played an important role in DCF in estuarine sediments, WL pathway might play a more significant role, which has not been previously recognized. Overall, this study highlights that DCF activities coincide with the genetic potential of chemoautotrophy and the availability of reductive substrates across the estuarine-coastal continuum, and provides an important scientific basis for accurate quantitative assessment of global estuarine carbon sink.


Asunto(s)
Sedimentos Geológicos , Metagenoma , Sedimentos Geológicos/química , Ciclo del Carbono , Carbón Orgánico , Estuarios , Isótopos , Carbono/análisis
9.
Eur Radiol ; 34(2): 945-956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37644151

RESUMEN

OBJECTIVE: To reduce the number of biopsies performed on benign breast lesions categorized as BI-RADS 4-5, we investigated the diagnostic performance of combined two-dimensional and three-dimensional shear wave elastography (2D + 3D SWE) with standard breast ultrasonography (US) for the BI-RADS assessment of breast lesions. METHODS: A total of 897 breast lesions, categorized as BI-RADS 3-5, were subjected to standard breast US and supplemented by 2D SWE only and 2D + 3D SWE analysis. Based on the malignancy rate of less than 2% for BI-RADS 3, lesions assessed by standard breast US were reclassified with SWE assessment. RESULTS: After standard breast US evaluation, 268 (46.1%) participants underwent benign biopsies in BI-RADS 4-5 lesions. By using separated cutoffs for upstaging BI-RADS 3 at 120 kPa and downstaging BI-RADS 4a at 90 kPa in 2D + 3D SWE reclassification, 123 (21.2%) participants underwent benign biopsy, resulting in a 54.1% reduction (123 versus 268). CONCLUSION: Combining 2D + 3D SWE with standard breast US for reclassification of BI-RADS lesions may achieve a reduction in benign biopsies in BI-RADS 4-5 lesions without sacrificing sensitivity unacceptably. CLINICAL RELEVANCE STATEMENT: Combining 2D + 3D SWE with US effectively reduces benign biopsies in breast lesions with categories 4-5, potentially improving diagnostic accuracy of BI-RADS assessment for patients with breast lesions. TRIAL REGISTRATION: ChiCTR1900026556 KEY POINTS: • Reduce benign biopsy is necessary in breast lesions with BI-RADS 4-5 category. • A reduction of 54.1% on benign biopsies in BI-RADS 4-5 lesions was achieved using 2D + 3D SWE reclassification. • Adding 2D + 3D SWE to standard breast US improved the diagnostic performance of BI-RADS assessment on breast lesions: specificity increased from 54 to 79%, and PPV increased from 54 to 71%, with slight loss in sensitivity (97.2% versus 98.7%) and NPV (98.1% versus 98.7%).


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Femenino , Humanos , Mama/diagnóstico por imagen , Mama/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Diagnóstico Diferencial , Diagnóstico por Imagen de Elasticidad/métodos , Estudios Prospectivos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Ultrasonografía Mamaria/métodos
10.
Sci Total Environ ; 912: 168766, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38008310

RESUMEN

Coastal wetlands are one of the most important natural sources of nitrous oxide (N2O). Previous studies have shown that copper-containing chemicals are able to reduce N2O emissions from these ecosystems. However, these chemicals may harm organisms present in coastal waters and sediment, and disturb the ecological balance of these areas. Here, we first investigated the physiological characteristics and genetic potential of denitrifying bacteria isolated from coastal wetlands. Based on an isolated denitrifier carrying a complete denitrification pathway, we tested the effect of the natural mineral chalcopyrite on N2O production by the bacteria. The results demonstrated that chalcopyrite addition lowers N2O emissions from the bacteria while increasing its N2 production rate. Among the four denitrification genes of the isolate, only nosZ gene expression was significantly upregulated following the addition of 2 mg L-1 chalcopyrite. Furthermore, chalcopyrite was applied to coastal wetland sediments. The N2O flux was significantly reduced in 50-100 mg L-1 chalcopyrite-amended sets relative to the controls. Notably, the dissolved Cu concentration in chalcopyrite-amended sediment remained within the limit set by the National Sewage Treatment Discharge Standard. qPCR and metagenomic analysis revealed that the abundance of N2O-reducing bacteria with the nosZ or nirK + nosZ genotype increased significantly in the chalcopyrite-amended groups relative to the controls, suggesting their active involvement in the reduction of N2O emissions. Our findings offer valuable insights for the use of natural chalcopyrite in large-scale field applications to reduce N2O emissions.


Asunto(s)
Cobre , Óxido Nitroso , Óxido Nitroso/análisis , Cobre/metabolismo , Humedales , Desnitrificación , Ecosistema , Bacterias/metabolismo , Microbiología del Suelo
11.
Eco Environ Health ; 2(3): 184-192, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38074994

RESUMEN

Salt marsh plants play a vital role in mediating nitrogen (N) biogeochemical cycle in estuarine and coastal ecosystems. However, the effects of invasive Spartina alterniflora on N fixation and removal, as well as how these two processes balance to determine the N budget, remain unclear. Here, simultaneous quantifications of N fixation and removal via 15N tracing experiment with native Phragmites australis, invasive S. alterniflora, and bare flats as well as corresponding functional gene abundance by qPCR were carried out to explore the response of N dynamics to S. alterniflora invasion. Our results showed that N fixation and removal rates ranged from 0.77 ± 0.08 to 16.12 ± 1.13 nmol/(g·h) and from 1.42 ± 0.14 to 16.35 ± 1.10 nmol/(g·h), respectively, and invasive S. alterniflora generally facilitated the two processes rates. Based on the difference between N removal and fixation rates, net N2 fluxes were estimated in the range of -0.39 ± 0.14 to 8.24 ± 2.23 nmol/(g·h). Estimated net N2 fluxes in S. alterniflora stands were lower than those in bare flats and P. australis stands, indicating that the increase in N removal caused by S. alterniflora invasion may be more than offset by N fixation process. Random forest analysis revealed that functional microorganisms were the most important factor associated with the corresponding N transformation process. Overall, our results highlight the importance of N fixation in evaluating N budget of estuarine and coastal wetlands, providing valuable insights into the ecological effect of S. alterniflora invasion.

12.
Infect Drug Resist ; 16: 7497-7505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089961

RESUMEN

Purpose: To increase pulmonary tuberculosis (PTB) treatment adherence in Xinjiang Region, an electronic DOTS (eDOTS) system developed was applied and evaluated. Methods: An eDOTS system comprised electronic medicine boxes, mobile phones and a central processing platform. Between April and June 2016, persons with active PTB (PAPTB) were recruited from villages and a city and were prescribed a six-month course of antibiotics using either DOTS or eDOTS. Treatment adherence rate and chest X-ray digital radiography (DR) score were used to evaluate usefulness of eDOTS. Results: A total 167 PAPTB were recruited with 81 participants from villages and 86 from neighbourhoods. Of the 81 village patients, 43 (53%) used eDOTS and 38 (47%) used DOTS. Among the 86 patients from neighbourhoods, 50 (58%) used eDOTS and 36 (42%) used DOTS. After 6 months of treatment, the average treatment compliance of the village patients who used eDOTS were 47.0%±20.5% compared to 26.7%±21.1% who used DOTS (t=-4.475, p<0.001). The patients using eDOTS from both the villages and city had significantly lower X-ray DR scores than the patients using DOTS by 1.81 points, 95% CI (0.72-2.90) and 1.05 points, 95% CI (0.15-1.95), respectively. Conclusion: eDOTS is an effective means of managing the treatment of active PTB patients through daily reminding and monitoring of patient compliance. Ease of contact with doctors and special education programs encouraged PAPTB to complete their treatment course as required.

13.
Genes (Basel) ; 14(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38136929

RESUMEN

Pseudomonas chengduensis is a new species of Pseudomonas discovered in 2014, and currently, there is a scarcity of research on this bacterium. The P. chengduensis strain WD211 was isolated from a fish pond. This study investigated the purification capability and environmental adaptability of strain WD211 in wastewater and described the basic features and functional genes of its complete genome. According to the results, the sewage treated with strain WD211 showed a decrease in concentration of 18.12% in total nitrogen, 89.39% in NH4+, 62.16% in NO3-, 79.97% in total phosphorus, and 71.41% in COD after 24 h. Strain WD211 is able to survive in a pH range of 6-11. It shows resistance to 7% sodium chloride and different types of antibiotics. Genomic analysis showed that strain WD211 may remove nitrogen and phosphorus through the metabolic pathway of nitrogen assimilation and phosphorus accumulation, and that it can promote organic decomposition through oxygenase. Strain WD211 possesses genes for producing betaine, trehalose, and sodium ion transport, which provide it with salt tolerance. It also has genes for antibiotic efflux and multiple oxidases, which give it antibiotic resistance. This study contributes to the understanding of the sewage treatment ability and potential applications of P. chengduensis.


Asunto(s)
Pseudomonas , Aguas del Alcantarillado , Animales , Aguas del Alcantarillado/microbiología , Pseudomonas/genética , Pseudomonas/metabolismo , Acuicultura , Antibacterianos/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo
14.
Front Plant Sci ; 14: 1301560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143575

RESUMEN

Introduction: With the climate warming, the occurrence of freezing events is projected to increase in late spring and early autumn in the Northern Hemisphere. Observation of morphological traits showed that Cycas panzhihuaensis was more tolerant to unexpected freezing stress than C. bifida. Energy balance is crucial for plant tolerance to stress. Here, we aimed to determine whether the different responses of the two species to the unpredicted freezing stress were associated with the metabolism of energy and related substances. Methods: The effects of unexpected freezing temperatures on C. panzhihuaensis and C. bifida were studied by measuring chlorophyll fluorescence parameters, energy charge and the profile of nonstructural carbohydrates (NSC) and lipids. Results: C. panzhihuaensis exhibited higher stability of photosynthetic machinery than C. bifida under unpredicted freezing events. Significant interaction between species and treatments were observed in the energy charge, the level of NSC and its most components and the amount of most lipid categories and lipid classes. The decrease of soluble sugar and the increase of neutral glycerolipids at the early freezing stage, the accumulation of membrane glycerolipids at the late freezing stage and the continuous decrease of energy charge during the freezing period were the characteristics of C. panzhihuaensis responding to unexpected freezing stress. The degradation of membrane glycerolipids and the continuous decrease of soluble sugar during the freezing period and the accumulation of neutral glycerolipids and energy charge at the late freezing stage represented the characteristics of C. bifida responses. Discussion: The different freezing sensitivity between C. panzhihuaensis and C. bifida might be associated with the differential patterns of the metabolism of energy, NSC and lipids. C. panzhihuaensis possesses the potential to be introduced to the areas of higher latitudes and altitudes.

16.
Sci Rep ; 13(1): 18353, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884630

RESUMEN

Circular RNAs (circRNAs) play key roles in colorectal cancer (CRC) progression, but little is known about the biological functions of hsa_circRNA_001676 in CRC. Therefore, we explored the potential role of hsa_circRNA_001676 in CRC development. RT-qPCR was performed to determine hsa_circRNA_001676, miR-556-3p and Ras-GTPase-activating SH3 domain-binding-proteins 2 (G3BP2) levels in CRC tissues. Meanwhile, to evaluate the roles of hsa_circRNA_001676, miR-556-3p and G3BP2 on CRC, functional analysis of cell proliferation, migration and stemness were then performed. Our results showed that compared to normal tissues, hsa_circRNA_001676 and G3BP2 level was elevated, but miR-556-3p level was reduced in CRC tissues. Additionally, luciferase reporter results showed that hsa_circRNA_001676 was shown to target miR-556-3p, and G3BP2 was targeted by miR-556-3p. Hsa_circRNA_001676 or G3BP2 overexpression promoted CRC cell proliferation and migration. Conversely, miR-556-3p overexpression suppressed CRC cell proliferation and migration. Moreover, deficiency of hsa_circRNA_001676 or G3BP2 repressed the CRC cell proliferation, migration and stemness. Meanwhile, hsa_circRNA_001676 deficiency obviously reduced tumor growth and stemness in a CRC mouse xenograft model. Furthermore, hsa_circRNA_001676 deficiency notably reduced G3BP2 level, but elevated miR-556-3p level in tumor tissues from tumor-bearing mice. Mechanistically, hsa_circRNA_001676 targeted miR-556-3p to increase G3BP2 level, contributing to the progression of CRC. Collectively, hsa_circRNA_001676 was able to accelerate proliferation, migration and stemness in CRC through regulating miR-556-3p/G3BP2 axis, suggesting that hsa_circRNA_001676 may become a potential therapeutic target in treating CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Animales , Ratones , ARN Circular/genética , MicroARNs/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Línea Celular Tumoral , Proteínas de Unión al ARN/genética , Proteínas Adaptadoras Transductoras de Señales/genética
17.
Adv Clin Exp Med ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747444

RESUMEN

BACKGROUND: Non-standardized insulin injection has an impact on the efficacy of glucose control. OBJECTIVES: The aim of the study was to explore the effectiveness of a nursing project in improving the insulin self-injection accuracy of diabetes mellitus patients. MATERIAL AND METHODS: A total of 200 type 2 diabetes patients who received insulin therapy with an insulin pen were recruited at the First Affiliated Hospital of Army Medical University (Chongqing, China). Patients were randomly assigned to a control (n = 100) or intervention (n = 100) group. Conventional health education was conducted in the control group, while a nursing project and conventional health education were undertaken in the intervention group. The following parameters were analyzed between the 2 groups: standardized insulin pen use at admission and discharge, glycosylated hemoglobin (HbA1c), time in range (TIR), and adipose hyperplasia incidence rate 6 months after discharge. RESULTS: Concerning standardized insulin self-injection, the intervention group was superior to the control group, and the difference between the 2 groups was statistically significant (p < 0.05). The HbA1c levels (p = 0.000), TIR (p = 0.005) and adipose hyperplasia incidence rate 6 months after discharge (p = 0.000) all improved in the intervention group compared to the control group. CONCLUSIONS: The application of the nursing project effectively improved the efficacy of glucose control in diabetes mellitus patients.

18.
Water Res ; 245: 120590, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703755

RESUMEN

Global estuarine and coastal zones are facing severe microplastics (MPs) pollution. Sulfate reducers (SRB) and denitrifiers (DNB) are two key functional microorganisms in these zones, exhibiting intricate interactions. However, whether and how MPs modulate the interactions between SRB and DNB, with implications for denitrification and associated N2O emissions, remains poorly understood. Here, we simultaneously investigated the spatial response patterns of SRB-DNB interactions and denitrification and associated N2O emissions to different MPs exposure along an estuarine gradient in the Yangtze Estuary. Spatial responses of denitrification to polyvinyl chloride (PVC) and polyadipate/butylene terephthalate (PBAT) MPs exposure were heterogeneous, while those of N2O emissions were not. Gradient-boosted regression tree and multiple regression model analyses showed that sulfide, followed by nitrate (NO3-), controlled the response patterns of denitrification to MPs exposure. Further mechanistic investigation revealed that exposure to MPs resulted in a competitive and toxic (sulfide accumulation) inhibition of SRB on DNB, ultimately inhibiting denitrification at upstream zones with high sulfide but low NO3- levels. Conversely, MPs exposure induced a competitive inhibition of DNB on SRB, generally promoting denitrification at downstream zones with low sulfide but high NO3- levels. These findings advance the current understanding of the impacts of MPs on nitrogen cycle in estuarine and coastal zones, and provide a novel insight for future studies exploring the response of biogeochemical cycles to MPs in various ecosystems.

19.
Environ Int ; 179: 108151, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37603994

RESUMEN

Coastal soil microbiomes play a key role in coastal ecosystem functioning and are intensely threatened by land reclamation. However, the impacts of coastal reclamation on soil microbial communities, particularly on their assembly processes, co-occurrence patterns, and the multiple soil functions they support, remain poorly understood. This impedes our capability to comprehensively evaluate the impacts of coastal reclamation on soil microbiomes and to restore coastal ecosystem functions degraded by reclamation. Here, we investigated the temporal dynamics of bacterial and fungal communities, community assembly processes, co-occurrence patterns, and ecosystem multifunctionality along a 53-year chronosequence of paddy soil following reclamation from tidal flats. Reclamation of tidal flats to paddy soils resulted in decreased ß-diversity, increased homogeneous selection, and decreased network complexity and robustness of both bacterial and fungal communities, but caused contrasting α-diversity response patterns of them. Reclamation of tidal flats to paddy soils also decreased the multifunctionality of coastal ecosystems, which was largely associated with the fungal network complexity and α-diversity. Collectively, this work demonstrates that coastal reclamation strongly reshaped the soil microbiomes at the level of assembly mechanisms, interaction patterns, and functionality level, and highlights that soil fungal community complexity should be considered as a key factor in restoring coastal ecosystem functions deteriorated by land reclamation.


Asunto(s)
Microbiota , Suelo
20.
Prev Med Rep ; 35: 102362, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37584062

RESUMEN

Number of cases of tuberculosis (TB) was higher than that of the national level in Kashgar, China. This study aimed to analyze the spatial and temporal distribution of TB and the relationship between TB and social factors, which can provide a reference for the prevention and control of TB. We applied spatial autocorrelation analysis to study the distribution of tuberculosis in Kashgar. We used a geographically weighted regression (GWR) model to analyze the relationship between TB and social factors. A total of 100,330 cases of TB in Kashgar from 2016 to 2021 were analyzed. The number of TB cases in Kashgar was higher in the east, lower in the west, and most elevated in the center. The highest cumulative number of cases was found in Shache county. Global Moran's I ranged from -0.212 to -0.549, and local spatial autocorrelation analysis identified four clusters. According to our analysis, the incidence of tuberculosis was negatively correlated among the regions of Kashgar, and the related causes need to be analyzed in depth in future studies. Per capita gross domestic product (GDP), number of medical institutions per capita, and total population influenced the incidence of tuberculosis in Kashgar. Based on our findings, we suggest some effective measures to reduce the risk of TB infection, such as improving the living standard, developing the regional economy, and distributing health resources rationally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...